Working Papers

„Online Demand Response Programs for Constrained Local Electricity Systems“ with Gunther Gust and Dirk Neumann.

Renewable energies require new approaches to the operation of power systems. In this work, we present a novel Demand Response (DR) program to mitigate grid congestion. The program stands out by adjusting electricity prices online and solely based on observed aggregate electricity consumption. It thereby avoids privacy concerns and expensive information system infrastructure investments. Additionally, it can cope with non-elastic and time-interdependent demand—which is typical for storage devices and industrial processes. Beyond the DR program, this paper contributes to research on flexible load modeling. Specifically, we model four flexible load types and provide a unified framework of load modeling under uncertainty and with time interdependencies. Numerical experiments show that our DR program achieves considerable and stable cost savings of 40% to 60% in comparison to conventional DR programs. Moreover, the solution approach based on Deep Reinforcement Learning reaches these savings after a short learning period corresponding to only 25 simulation days. Regarding load flexibility, we find that the responses of the four load types strongly differ depending on prices and the lag between the announcement and the application of price changes (`notification interval’) which is an important design parameter. Our results imply that system operators should flexibilize their DR programs with the help of learning algorithms and tailor their program to the local load composition, congestion frequency, and forecasting quality. For researchers, our solution approach and our unified framework can help to solve pricing problems with unknown and heterogeneous demand, which occurs on online platforms and in other environments.

„Harnessing Demand Flexibility in Electric Distribution Systems“ with David Chassin, Claudio Rivetta, and Jim Sweeney.

The advent of decentralized renewable energy resources allows distribution systems — the lower voltage levels of the electricity grid — to play an increasingly active role in the efficient operations of power systems.
In this work, we suggest an approach to manage load flexibility of customers in residential distribution systems, an under-utilized resource. Specifically, we integrate a market-based coordination mechanism with automated representation of customer preferences by smart home systems to determine the efficient dispatch of appliances in real-time and manage a potential constraint to the overlying grid. For that purpose, we conceptualize how customers‘ real-time willingness-to-pay for the dispatch of time-interdependent electricity-based services can automatically be derived. We specify our approach for Heating, Ventilation, and Air Conditioning (HVAC) systems and show that customer preferences can be easily provided through an intuitive slider. Finally, we demonstrate the benefits of our approach in a case study of 437 houses in Austin, Texas, and estimate gains of more than 17,000 USD over one year, and significantly more in constrained systems. We find that all customers contribute to the welfare gain and that all customers benefit, although not equally. Moreover, our approach is likely to decrease optimal grid investment. Our work makes important suggestions on how the flexibility potential of residential demand can be unleashed through the means of automation and provides insight into the distribution of welfare gains among heterogeneous customers.

And earlier version can be found here.

„Curtailment Contracts for Flexible Loads“ with Dirk Neumann and Ram Rajagopal.

Load aggregation can be an effective approach to bundle residential loads and market their flexibility and central markets. In this work, we propose a business model for an aggregator with uncertain generation. By deploying flexible demand resources, the aggregator is able to balance short-term fluctuations of generation and avoid balancing costs. We design a contract menu for customers with HVAC systems and private temperature sensitivities and show that an incentive-compatible contract menu is feasible. This extends existing literature to time-interdependent operations and specific electricity-based services. Furthermore, we use a numerical example to demonstrate that customers are better off under a curtailment contract than under a fixed retail tariff, that low-comfort customers are better off than under real-time pricing, and that the bundling of generation and flexible load realizes synergies for the aggregator as opposed to the separate marketing of generation and flexible load.

Conference Papers

Rausch, B.; Mayer, K.; Arlt, M.-L.; Gust, G.; Staudt, P.; Weinhardt, C.; Neumann, D.; Rajagopal, R. (2020): An Enriched Automated PV Registry: Combining Image Recognition and 3D Building Data. Accepted for NeurIPS 2020, Workshop Tackling Climate Change with Machine Learning.

Mayer, K.; Wang, Z.; Arlt, M.-L.; Neumann, D.; Rajagopal, R. (2020): DeepSolar for Germany: A deep learning framework for PV system mapping from aerial imagery. 2020 IEEE Smart Energy Systems and Technologies (2020 IEEE SEST), Istanbul, Turkey, September 07 – 09, 2020.

Arlt, M.-L.; Neumann, D.; Rajagopal, R. (2019): Curtailment Contract Design for HVAC Systems and Benefits for Management of Uncertain Generation. Accepted for IEEE PES General Meeting, Atlanta, USA, August 4-8, 2019.

Arlt, M.-L.; Rajagopal, R. (2019): Curtailment Contract Design for HVAC Systems. Accepted for 2019 American Control Conference (ACC), Philadelphia, USA, July 10-12, 2019.

Arlt, M.-L.; Cardoso, G. and Weng, D. (2017): Hydrogen Storage Applications in Industrial Microgrids. 2017 IEEE Green Energy and Smart Systems Conference (IGESSC 2017), Long Beach, USA, November 6-7, 2017 (Presentation and publication in conference proceedings).

Other Publications

Arlt, M.-L., and Astier, N. (2020): Where can Drivers Charge Their Electric Vehicle for Free in the U.S.?, IAEE Energy Forum

Arlt, M.-L. (2018): Preparing electricity markets for renewable energies. Newsletter of the European Centre for Energy and Resource Security, King’s College London, Issue 76, June 2018.

Ecofys and Fraunhofer IWES (2017): Smart Market Design in German Distribution Grids (German Smart-Market-Design in deutschen Verteilnetzen). Study commissioned by Agora Energiewende. Contributors: Ropenus, S.; Nabe, C.; Arlt, M.-L.; Döring, M.; Holzhammer, U.; Gerhardt, N.

%d Bloggern gefällt das: